<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <font face="Comic Sans MS">Have you got a detailed description of
      your set-up that could be posted? Zayne's old enough now that we
      could attempt to have Webb family driveway experiments, and this
      looks like a neat set-up if you can compare
      overflowing/non-overflowing and vertical</font> vs. horizontal.<br>
    Karen<br>
    <div class="moz-signature"><br>
      <img src="cid:part1.06050804.08010302@xmission.com" border="0"></div>
    <br>
    On 9/8/2013 10:33 PM, Carlton Cross wrote:
    <blockquote
      cite="mid:2AC9BD60C7493E40B740FB73EAB4733719CC2168@Post10b.skynet.local"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html;
        charset=ISO-8859-1">
      <meta name="Generator" content="Microsoft Word 14 (filtered
        medium)">
      <style><!--
/* Font Definitions */
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Tahoma;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:"Times New Roman","serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-reply;
        font-family:"Calibri","sans-serif";
        color:#1F497D;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri","sans-serif";}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
      <div class="WordSection1">
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;color:#1F497D">What
            you describe sounds like what I remember.&nbsp; Jeff may have
            something to add if my memory needs correction.&nbsp; (I haven&#8217;t
            had time to dig up our old data.)<o:p></o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;color:#1F497D"><o:p>&nbsp;</o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;color:#1F497D">There
            are many features of a geyser&#8217;s plumbing that will affect
            the frequency of oscillation, the main ones being the
            combined volume of the bubbles, the mass of the water above
            the bubbles, and the size and friction of the passage
            leading to the surface.&nbsp; Smooth pipes that are cooled by the
            outside air are not very good models of geyser plumbing, but
            I think it&#8217;s interesting that the behavior of the models can
            be seen in some natural geysers.&nbsp; &nbsp;I don&#8217;t remember finding
            a geyser that displayed the rapid bouncing, but that is no
            surprise because the friction in a natural geyser tube is
            much greater than in a smooth pipe and the mass of the
            moving water is generally greater.&nbsp; As the friction
            increases, the frequency of oscillation will decrease; and,
            as the moving mass increases, the frequency will decrease.&nbsp;
            I can&#8217;t think of any reason why a natural geyser would
            oscillate faster than the models.<o:p></o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;color:#1F497D"><o:p>&nbsp;</o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;color:#1F497D">Carlton
            Cross<o:p></o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;color:#1F497D"><a class="moz-txt-link-abbreviated" href="mailto:cross@bmi.net">cross@bmi.net</a><o:p></o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;color:#1F497D"><o:p>&nbsp;</o:p></span></p>
        <p class="MsoNormal"><b><span
style="font-size:10.0pt;font-family:&quot;Tahoma&quot;,&quot;sans-serif&quot;">From:</span></b><span
style="font-size:10.0pt;font-family:&quot;Tahoma&quot;,&quot;sans-serif&quot;">
            <a class="moz-txt-link-abbreviated" href="mailto:geysers-bounces@lists.wallawalla.edu">geysers-bounces@lists.wallawalla.edu</a>
            [<a class="moz-txt-link-freetext" href="mailto:geysers-bounces@lists.wallawalla.edu">mailto:geysers-bounces@lists.wallawalla.edu</a>]
            <b>On Behalf Of </b>Demetri Stoumbos<br>
            <b>Sent:</b> Sunday, September 08, 2013 5:24 PM<br>
            <b>To:</b> Geyser Observation Reports<br>
            <b>Subject:</b> Re: [Geysers] Blog post about geyser
            mechanisms<o:p></o:p></span></p>
        <p class="MsoNormal"><o:p>&nbsp;</o:p></p>
        <div>
          <p class="MsoNormal">I find it interesting that your
            experiments produced two distinct patterns of water column
            bouncing. &nbsp;In my backyard modeling experiments, I have found
            that the system starts out with the "rapid" form of
            bouncing, and then progressively shifted to the "slow" form.
            &nbsp;I noticed this both in models which overflowed between
            eruptions, and those in which the water level naturally sat
            a little bit below overflow. &nbsp;As the eruption neared, the
            bouncing would decrease in bounces per second, increase in
            amplitude, and become more erratic. &nbsp;That is to say that a
            water level vs time graph would start out looking like a
            sinusoidal wave, but then the ordered nature of the curve
            would deteriorate as time went on as the water level stalled
            for split seconds or bounce around at peaks and troughs. &nbsp;Of
            course in the overflowing systems, the actual water level
            was constant at vent level, so I went off of how much water
            overflowed per unit time. &nbsp;In these systems, as the bouncing
            progressed to "slow" form and its amplitude grew during an
            interval, the low parts of the bouncing would become low
            enough that overflow would momentarily stop (think
            Depression or Oblong).<o:p></o:p></p>
          <div>
            <p class="MsoNormal"><o:p>&nbsp;</o:p></p>
          </div>
          <div>
            <p class="MsoNormal">I guess my end question is: did your
              models show an either/or pattern in relation to the two
              forms of bouncing, or did they start out with the "rapid"
              form, then at one point flip over to "slow" form?<o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><o:p>&nbsp;</o:p></p>
          </div>
          <div>
            <p class="MsoNormal">Demetri Stoumbos<o:p></o:p></p>
          </div>
        </div>
        <div>
          <p class="MsoNormal" style="margin-bottom:12.0pt"><o:p>&nbsp;</o:p></p>
          <div>
            <p class="MsoNormal">On Sun, Sep 8, 2013 at 2:32 PM, Carlton
              Cross &lt;<a moz-do-not-send="true"
                href="mailto:cross@bmi.net" target="_blank">cross@bmi.net</a>&gt;
              wrote:<o:p></o:p></p>
            <p class="MsoNormal">A quote from the below link,<br>
              <br>
              "There, after an eruption, more and more steam can
              accumulate between the surface of the water and the roof
              of the cavity, gradually building up pressure. When the
              pressure grows too high, the steam and water escape
              through the geyser's vertical shaft."<br>
              <br>
              and<br>
              <br>
              "They found that pressure builds up in a bubble trap there
              between geyser eruptions, just as in the Russian study."<br>
              <br>
              I haven't had time to locate and read the referenced
              sources, &nbsp;but I think it's important to note that pressure
              build-up is not what causes an eruption. &nbsp;Also, the Cross
              driveway experiments have produced geyser models that
              demonstrate eruptions from an entirely vertical system
              with no places for trapping steam. &nbsp;Pressure gages along
              the water column show clearly that the pressure everywhere
              decreases continuously once the eruption has started. &nbsp;The
              temperature also drops because the steam carries heat out
              of the system. &nbsp;Eruptions in a vertical system were not
              noticeably different from those of a horizontal system.<br>
              <br>
              The static pressure within a fluid system is determined by
              the depth below the surface. &nbsp;When you dive into water,
              you feel greater pressure as you go deeper. &nbsp;It doesn't
              matter whether you're in a chamber with vapor or not. &nbsp;In
              a horizontal chamber, the static pressure will be
              determined by the pressure at the chamber exit to the
              surface, and the pressure at the exit will be determined
              by the depth below the surface. &nbsp;As a geyser system fills
              after an eruption, the depth of the water increases until
              the start of overflow. &nbsp;After that, the temperature will
              increase, but not the static pressure.<br>
              <br>
              Steam within a horizontal chamber will displace water from
              the chamber. &nbsp;That water must exit through whatever
              passage leads to the surface where overflow will occur.
              &nbsp;Hence, the effective depth of the water above the chamber
              will not change and the static pressure will NOT increase.<br>
              <br>
              Once a geyser system has reached overflow, it can and does
              continue to heat, and, at some point, a small section of
              upward-moving water will rise until it reaches a place
              where the static pressure is low enough for the water to
              boil and produce steam. &nbsp;The expansion of the steam will
              displace water from that region, and, simultaneously, the
              steam bubbles will begin to rise. &nbsp;As the bubbles rise in
              the water column, the static pressure at all points below
              the bubbles will decrease because water with bubbles
              weighs less than water without bubbles. &nbsp;Finally, when the
              pressure drops, the boiling point drops and more water
              will boil which produces more bubbles which allows more
              water to boil, etc. &nbsp;The system has gone unstable and the
              expanding steam will begin to rush toward the surface exit
              - an eruption.<br>
              <br>
              So far, I have talked only about the static pressure which
              is determined by the depth within the system. &nbsp;There are,
              of course, dynamic pressure changes related to water
              movement. &nbsp;Once steam has accumulated within a chamber or
              the water column, the whole column can bounce up and down
              because the steam below is compressible. &nbsp;When the column
              rises, the steam expands and the pressure drops eventually
              to the point where the upward motion will decrease,
              possibly until it stops and then begins to fall. &nbsp;The
              downward motion will compress the steam below and the
              pressure will rise, possibly causing the steam to condense
              into water. &nbsp;When the pressure is finally great enough to
              stop the downward motion, expansion can begin again,
              pushing the water upward.<br>
              <br>
              Our driveway experiments clearly produced two forms, rapid
              and slow, of a bouncing water column as the system neared
              an eruption. &nbsp;In the rapid form, there was only slight
              movement of the water at about one cycle per second with
              no overflow. &nbsp;The slow form was more like a series of
              overflow surges separated by many seconds.<br>
              <br>
              Carlton Cross<br>
              <a moz-do-not-send="true" href="mailto:cross@bmi.net"
                target="_blank">cross@bmi.net</a><o:p></o:p></p>
            <div>
              <p class="MsoNormal"><br>
                <br>
                <br>
                <br>
                At 07:38 PM 9/7/2013, you wrote:<o:p></o:p></p>
            </div>
            <blockquote style="border:none;border-left:solid #CCCCCC
              1.0pt;padding:0in 0in 0in
              6.0pt;margin-left:4.8pt;margin-right:0in">
              <div>
                <p class="MsoNormal" style="margin-bottom:12.0pt">Thinking
                  this might interest some gazers who do not read
                  geological magazines or journals, I'll send along the
                  URL to a post I just put up about some interesting new
                  studies on geysers:<o:p></o:p></p>
              </div>
              <p class="MsoNormal">&lt;<a moz-do-not-send="true"
                  href="http://www.yellowstonetreasures.com/author-blog/"
                  target="_blank">http://www.yellowstonetreasures.com/author-blog/</a>&gt;<a
                  moz-do-not-send="true"
                  href="http://www.yellowstonetreasures.com/author-blog/"
                  target="_blank">http://www.yellowstonetreasures.com/author-blog/</a><o:p></o:p></p>
              <div>
                <p class="MsoNormal" style="margin-bottom:12.0pt"><br>
                  <br>
                  Happy geyser gazing to those of you who get to enjoy
                  the late season!<br>
                  <br>
                  Janet Chapple<o:p></o:p></p>
              </div>
              <p class="MsoNormal">_______________________________________________<br>
                Geysers mailing list<br>
                <a moz-do-not-send="true"
                  href="mailto:Geysers@lists.wallawalla.edu"
                  target="_blank">Geysers@lists.wallawalla.edu</a><br>
                <a moz-do-not-send="true"
                  href="https://lists.wallawalla.edu/mailman/listinfo/geysers"
                  target="_blank">https://lists.wallawalla.edu/mailman/listinfo/geysers</a><o:p></o:p></p>
            </blockquote>
            <p class="MsoNormal"><br>
              _______________________________________________<br>
              Geysers mailing list<br>
              <a moz-do-not-send="true"
                href="mailto:Geysers@lists.wallawalla.edu"
                target="_blank">Geysers@lists.wallawalla.edu</a><br>
              <a moz-do-not-send="true"
                href="https://lists.wallawalla.edu/mailman/listinfo/geysers"
                target="_blank">https://lists.wallawalla.edu/mailman/listinfo/geysers</a><o:p></o:p></p>
          </div>
          <p class="MsoNormal"><o:p>&nbsp;</o:p></p>
        </div>
      </div>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <br>
      <pre wrap="">_______________________________________________
Geysers mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Geysers@lists.wallawalla.edu">Geysers@lists.wallawalla.edu</a>
<a class="moz-txt-link-freetext" href="https://lists.wallawalla.edu/mailman/listinfo/geysers">https://lists.wallawalla.edu/mailman/listinfo/geysers</a></pre>
    </blockquote>
  </body>
</html>